Thermal Conductance of the 2D MoS2/h-BN and graphene/h-BN Interfaces
نویسندگان
چکیده
Two-dimensional (2D) materials and their corresponding van der Waals heterostructures have drawn tremendous interest due to their extraordinary electrical and optoelectronic properties. Insulating 2D hexagonal boron nitride (h-BN) with an atomically smooth surface has been widely used as a passivation layer to improve carrier transport for other 2D materials, especially for Transition Metal Dichalcogenides (TMDCs). However, heat flow at the interface between TMDCs and h-BN, which will play an important role in thermal management of various electronic and optoelectronic devices, is not yet understood. In this paper, for the first time, the interface thermal conductance (G) at the MoS2/h-BN interface is measured by Raman spectroscopy, and the room-temperature value is (17.0 ± 0.4) MW · m-2K-1. For comparison, G between graphene and h-BN is also measured, with a value of (52.2 ± 2.1) MW · m-2K-1. Non-equilibrium Green's function (NEGF) calculations, from which the phonon transmission spectrum can be obtained, show that the lower G at the MoS2/h-BN interface is due to the weaker cross-plane transmission of phonon modes compared to graphene/h-BN. This study demonstrates that the MoS2/h-BN interface limits cross-plane heat dissipation, and thereby could impact the design and applications of 2D devices while considering critical thermal management.
منابع مشابه
Controlling the orientation of nucleobases by dipole moment interaction with graphene/h-BN interfaces
The interfaces in 2D hybrids of graphene and h-BN provide interesting possibilities of adsorbing and manipulating atomic and molecular entities. In this paper, with the aid of density functional theory, we demonstrate the adsorption characteristics of DNA nucleobases at different interfaces of 2D hybrid nanoflakes of graphene and h-BN. The interfaces provide stronger binding to the nucleobases ...
متن کاملPhysics and chemistry of oxidation of two-dimensional nanomaterials by molecular oxygen
The discovery of graphene has inspired extensive interest in two-dimensional (2D) materials, and has led to synthesis/growth of additional 2D materials, generally referred to as ‘Beyond Graphene’. Notable among the recently discovered exotic 2D materials are group IV elemental monolayers silicene and germanene, group V elemental monolayer phosphorene, and binary monolayers, such as hexagonal bo...
متن کاملFactors controlling the CO intercalation of h-BN overlayers on Ru(0001).
The space between a two-dimensional (2D) material overlayer and a metal surface can be regarded as a nanoreactor, in which molecule adsorption and surface reaction may occur. In this work, we present CO intercalation under a hexagonal boron nitride (h-BN) overlayer on Ru(0001) at room temperature, observed using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and scann...
متن کاملComputational Study of Interfaces between 2D MoS2 and Surroundings
The extracted mobilities from MoS2 devices are usually much lower than the theoretical value. Without understanding the origin of mobility killers (surrounding dipoles/traps) and the effects of substrate passivation treatments, it is difficult to improve transport properties. This work presents a study of the interfaces between MoS2 and its surroundings (substrates/dielectrics) using density fu...
متن کاملSuppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field- effect transistors
Articles you may be interested in Microscopic origin of low frequency noise in MoS2 field-effect transistors Large on/off current ratio in hybrid graphene/BN nanoribbons by transverse electric field-induced control of bandgap Appl. 1 ∕ f noise in Ga N ∕ Al Ga N heterostructure field-effect transistors in high magnetic fields at 300 K
متن کامل